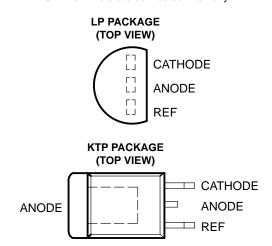
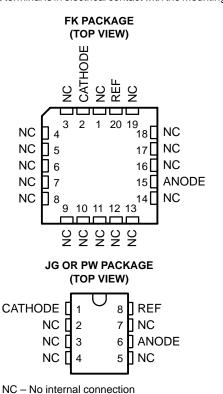

- 0.4% Initial Voltage Tolerance
- 0.2-Ω Typical Output Impedance
- Fast Turnon . . . 500 ns
- Sink Current Capability . . . 1 mA to 100 mA
- Low Reference Current (REF)
- Adjustable Output Voltage . . . V_{I(ref)} to 36 V


description

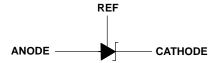
The TL1431 is a precision programmable reference with specified thermal stability over automotive. commercial, and temperature ranges. The output voltage can be set to any value between V_{I(ref)} (approximately 2.5 V) and 36 V with two external resistors (see Figure 16). This device has a typical output impedance of 0.2Ω . Active output circuitry provides a very sharp turnon characteristic, making the device an excellent replacement for zener diodes and other types of references in applications such as onboard regulation, adjustable power supplies, and switching power supplies.


The TL1431C is characterized for operation over the commercial temperature range of 0°C to 70°C. The TL1431Q is characterized for operation over the full automotive temperature range of -40°C to 125°C. The TL1431M is characterized for operation over the full military temperature range of -55°C to 125°C.

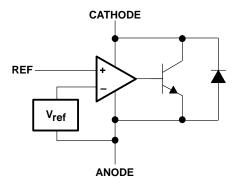
NC – No internal connection ANODE terminals are connected internally.

The ANODE terminal is in electrical contact with the mounting base.

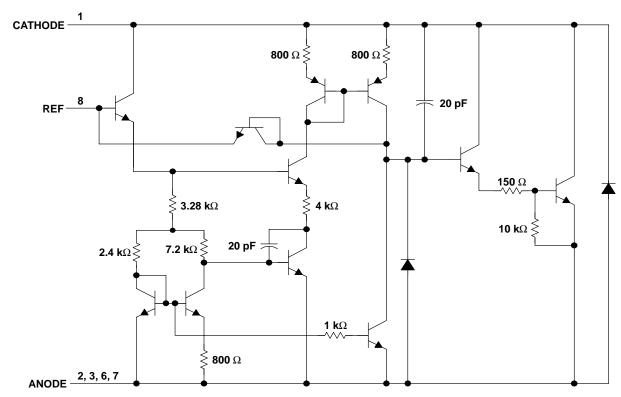
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



AVAILABLE OPTIONS


			PACKAG	ED DEVICES		
TA	SMALL OUTLINE (D)	PLASTIC FLANGE MOUNTED (KTP)	LANGE TO-226AA SMALL OUTLINE CARRIER OUNTED (LP) (PW) (FK)		CARRIER	CERAMIC DIP (JG)
0°C to 70°C	TL1431CD	TL1431CKTPR	TL1431CLP	TL1431CPW	-	_
-40°C to 125°C	TL1431QD	_	TL1431QLP	_	_	_
−55°C to 125°C	_	_	_	-	TL1431MFK	TL1431MJG

The D and LP packages are available taped and reeled. Add the suffix R to the device type (e.g., TL1431CDR). The KTP and PW packages are only available taped and reeled.


symbol

functional block diagram

equivalent schematic†

† All component values are nominal. Pin numbers shown are for the D package. SLVS062H - DECEMBER 1991 - REVISED JANUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Cathode voltage, V _{KA} (see Note 1)	
Reference input current range, I _{I(ref)}	\dots –50 μ A to 10 mA
Package thermal impedance, θ _{JA} (see Notes 2 and 4): D package	
(see Notes 2 and 3): KTP package	28°C/W
(see Notes 2 and 4): LP package	156°C/W
(see Notes 2 and 4): PW package	149°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	\dots -65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to ANODE, unless otherwise noted.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-5.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

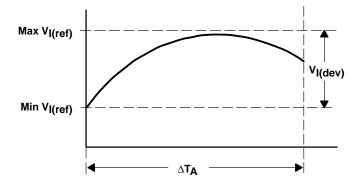
POWER DISSIPATION RATING TABLE - FREE-AIR TEMPERATURE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING	
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW	
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW	

recommended operating conditions

			MIN	MAX	UNIT
VKA	Cathode voltage		V _{I(ref)}	36	V
IKA	Cathode current		1	100	mA
		TL1431C	0	70	
TA	Operating free-air temperature	TL1431Q	-40	125	°C
		TL1431M	– 55	125	

electrical characteristics at specified free-air temperature, $I_{KA} = 10 \text{ mA}$ (unless otherwise noted)


PARAMETER		TEST CONDITIONS	T. †	TEST	TL1431C			UNIT
	FARAMETER	TEST CONDITIONS	T _A †	CIRCUIT	MIN	TYP	MAX	UNIT
V Deference involved and V V		Visa – Visa n	25°C	Figure 1	2490	2500	2510	mV
V _{I(ref)}	Reference input voltage	V _{KA} = V _{I(ref)}	Full range	rigure i	2480		2520	IIIV
V _{I(dev)}	Deviation of reference input voltage over full temperature range‡	V _K A = V _{I(ref)}	Full range	Figure 1		4	20	mV
$\frac{\Delta V_{I(ref)}}{\Delta V_{KA}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2	mV/V
lu n	Reference input current	R1 = 10 kΩ, R2 = ∞	25°C	Figure 2		1.5	2.5	μΑ
l(ref)	Reference input current	K1 = 10 K22, K2 = ∞	Full range	Figure 2			3	μΑ
I _I (dev)	Deviation of reference input current over full temperature range‡	R1 = 10 k Ω , R2 = ∞	Full range	Figure 2		0.2	1.2	μΑ
I _{min}	Minimum cathode current for regulation	VKA = VI(ref)	25°C	Figure 1		0.45	1	mA
	Off state authoric surrent	Vist 26 V Vist n 0	25°C	Figure 2		0.18	0.5	
loff	Off-state cathode current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	Figure 3			2	μΑ
z _K A	Output impedance§	$V_{KA} = V_{I(ref)}$, $f \le 1 \text{ kHz}$, $I_{KA} = 1 \text{ mA to } 100 \text{ mA}$	25°C	Figure 1		0.2	0.4	Ω

[†] Full range is 0°C to 70°C for C-suffix devices.

$$\left|\alpha_{V_{\mbox{l(ref)}}}\right|\!\left(\!\frac{\mbox{ppm}}{^{\circ}\mbox{C}}\!\right) = \frac{\left(\!\frac{V_{\mbox{l(dev)}}}{V_{\mbox{l(ref)}}\,\mbox{at}\,25^{\circ}\mbox{C}}\!\right) \times 10^{6}}{\Delta T_{\mbox{A}}}$$

where:

 $\Delta T_{\mbox{\scriptsize A}}$ is the rated operating temperature range of the device.

 $\alpha_{V_{l(ref)}} \text{ is positive or negative, depending on whether minimum } V_{l(ref)} \text{ or maximum } V_{l(ref)}, \text{ respectively, occurs at the lower temperature.}$

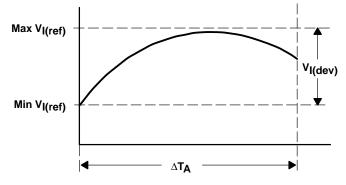
§ The output impedance is defined as: $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: $|z'| = \frac{\Delta V}{\Delta I}$, which is approximately equal to $|z_{KA}| \left(1 + \frac{R1}{R2}\right)$.

[†] The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{V_{I(ref)}}$ is defined as:

electrical characteristics at specified free-air temperature, $I_{KA} = 10 \text{ mA}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	- +	TEST	Т	TL1431Q			TL1431M		
	ARAMETER	1EST CONDITIONS	T _A †	CIRCUIT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{I(ref)}	Reference input voltage	V _{KA} = V _{I(ref)}	25°C Full range	Figure 1	2490 2470	2500	2510 2530	2475 2460	2500	2540 2550	mV
V _{I(dev)}	Deviation of reference input voltage over full temperature range‡	V _{KA} = V _I (ref)	Full range	Figure 1		17	55		17	55*	mV
$\frac{\Delta V_{I(ref)}}{\Delta V_{KA}}$	Ratio of change in reference input voltage to the change in cathode voltage	$\Delta V_{KA} = 3 \text{ V to } 36 \text{ V}$	Full range	Figure 2		-1.1	-2		-1.1	-2	mV/V
	Reference		25°C			1.5	2.5		1.5	2.5	
I _{I(ref)}	input current	R1 = 10 k Ω , R2 = ∞	Full range	Figure 2			4			5	μΑ
I(dev)	Deviation of reference input current over full temperature range‡	R1 = 10 kΩ, R2 = ∞	Full range	Figure 2		0.5	2		0.5	3*	μΑ
I _{min}	Minimum cathode current for regulation	VKA = VI(ref)	25°C	Figure 1		0.45	1		0.45	1	mA
	Off-state		25°C			0.18	0.5		0.18	0.5	
l _{off}	cathode current	$V_{KA} = 36 \text{ V}, V_{I(ref)} = 0$	Full range	Figure 3			2			2	μΑ
z _{KA}	Output impedance§	$V_{KA} = V_{I(ref)}$, $f \le 1$ kHz, $I_{KA} = 1$ mA to 100 mA	25°C	Figure 1		0.2	0.4		0.2	0.4	Ω


^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

$$\left|\alpha_{V_{\mbox{l(ref)}}}\right|\!\!\left(\!\frac{\mbox{ppm}}{^{\circ}\mbox{C}}\!\right) = \frac{\left(\!\frac{V_{\mbox{l(dev)}}}{V_{\mbox{l(ref)}}\,\mbox{at }25^{\circ}\mbox{C}}\!\right) \times 10^{6}}{\Delta T_{\mbox{A}}}$$

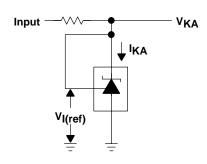
where:

6

 $\Delta T_{\mbox{\scriptsize A}}$ is the rated operating temperature range of the device.

 $\alpha_{V_{l(ref)}} \text{ is positive or negative, depending on whether minimum } V_{l(ref)} \text{ or maximum } V_{l(ref)}, \text{ respectively, occurs at the lower temperature.}$

§ The output impedance is defined as: $\left|z_{KA}\right| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$


When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by: $|z'| = \frac{\Delta V}{\Delta I}$, which is approximately equal to $|z_{KA}| \left(1 + \frac{R1}{R2}\right)$.

[†] Full range is –40°C to 125°C for Q-suffix devices, and –55°C to 125°C for M-suffix devices.

[‡] The deviation parameters $V_{I(dev)}$ and $I_{I(dev)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage $\alpha_{V_{I(ref)}}$ is defined as:

PARAMETER MEASUREMENT INFORMATION

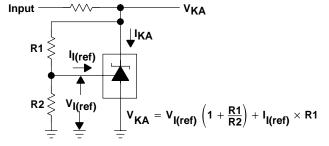
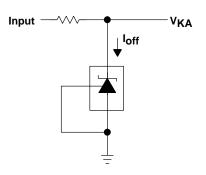
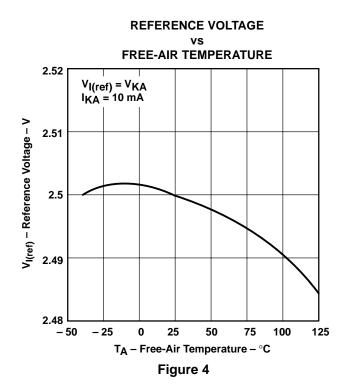
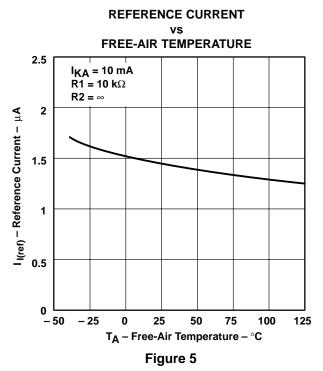


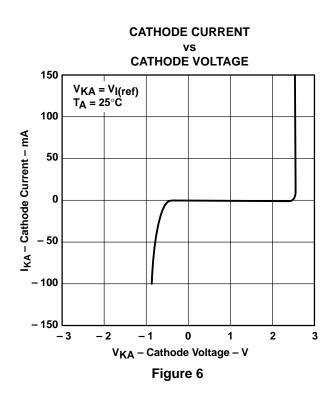
Figure 1. Test Circuit for $V_{(KA)} = V_{ref}$

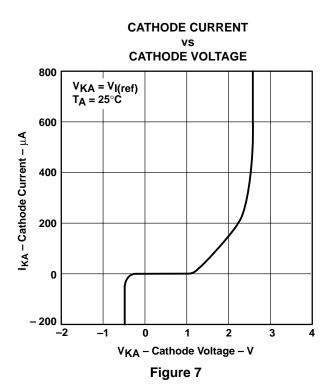
Figure 2. Test Circuit for $V_{(KA)} > V_{ref}$



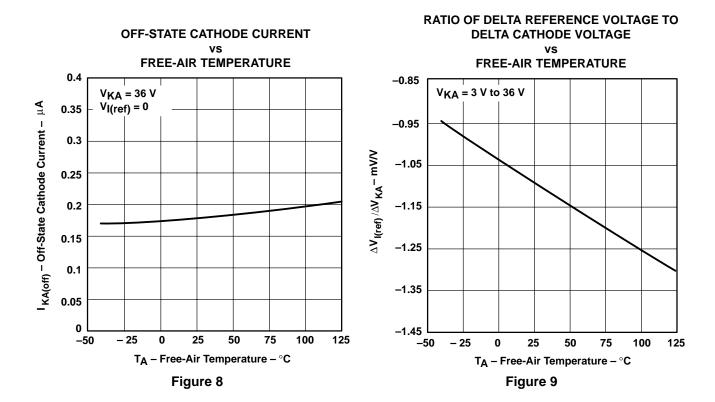

Figure 3. Test Circuit for I_{off}

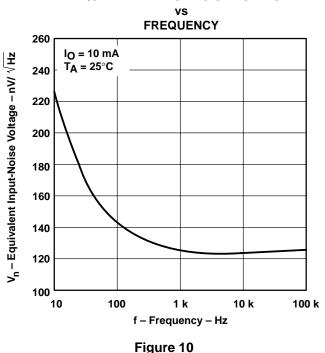

TYPICAL CHARACTERISTICS


Table of Graphs

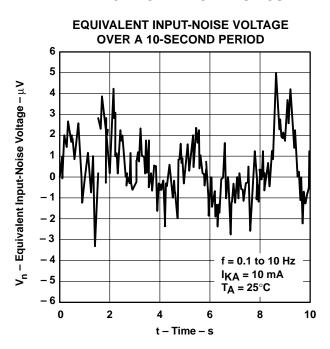

	FIGURE
Reference voltage vs Free-air temperature	4
Reference current vs Free-air temperature	5
Cathode current vs Cathode voltage	6, 7
Off-state cathode current vs Free-air temperature	8
Ratio of delta reference voltage to delta cathode voltage vs Free-air temperature	9
Equivalent input-noise voltage vs Frequency	10
Equivalent input-noise voltage over a 10-second period	11
Small-signal voltage amplification vs Frequency	12
Reference impedance vs Frequency	13
Pulse response	14
Stability boundary conditions	15

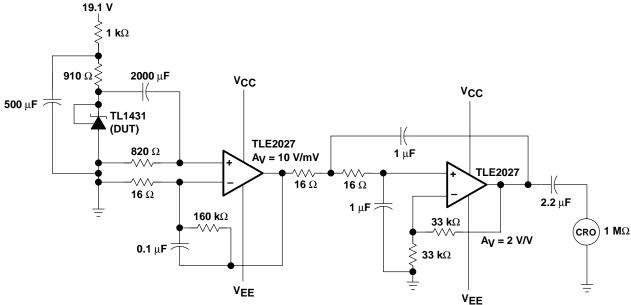
TYPICAL CHARACTERISTICS[†]




[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

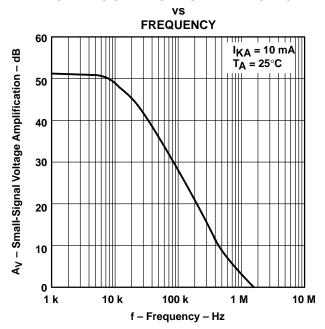
TYPICAL CHARACTERISTICS[†]

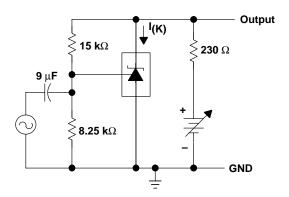

EQUIVALENT INPUT-NOISE VOLTAGE



† Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

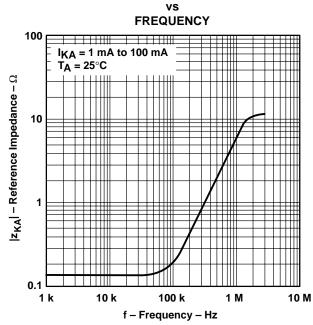
TYPICAL CHARACTERISTICS

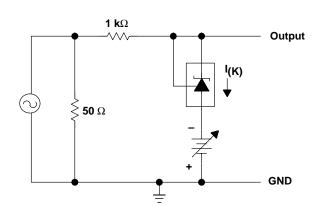

TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT INPUT-NOISE VOLTAGE


Figure 11

TYPICAL CHARACTERISTICS

SMALL-SIGNAL VOLTAGE AMPLIFICATION

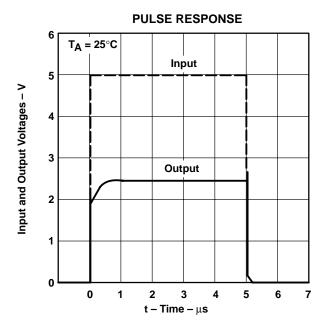




TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

Figure 12

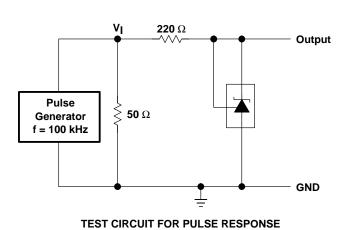
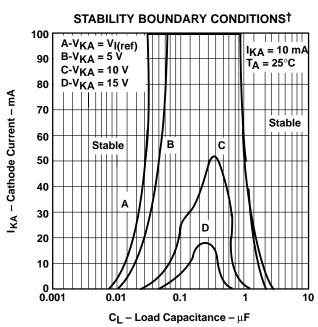
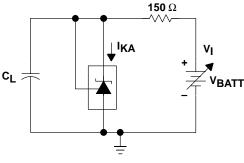
REFERENCE IMPEDANCE

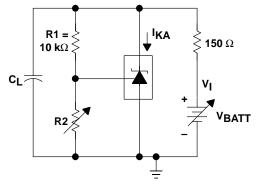


TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 13

TYPICAL CHARACTERISTICS


Figure 14

[†] The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ are adjusted to establish the initial V_{KA} and I_{KA} conditions, with C_L = 0. V_{BATT} and C_L are then adjusted to determine the ranges of stability.

TEST CIRCUIT FOR CURVE A

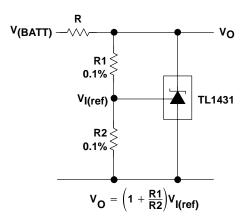

TEST CIRCUIT FOR CURVES B, C, AND D

Figure 15

Table of Application Circuits

APPLICATION	FIGURE
Shunt regulator	16
Single-supply comparator with temperature-compensated threshold	17
Precision high-current series regulator	18
Output control of a three-terminal fixed regulator	19
Higher-current shunt regulator	20
Crowbar	21
Precision 5-V, 1.5-A, 0.5% regulator	22
5-V precision regulator	23
PWM converter with 0.5% reference	24
Voltage monitor	25
Delay timer	26
Precision current limiter	27
Precision constant-current sink	28

NOTE A: R should provide cathode current \geq 1 mA to the TL1431 at minimum V(BATT).

Figure 16. Shunt Regulator

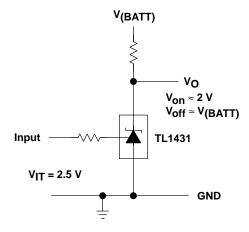
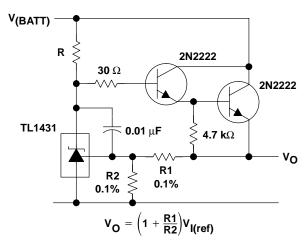



Figure 17. Single-Supply Comparator With Temperature-Compensated Threshold

NOTE A: R should provide cathode current \geq 1 mA to the TL1431 at minimum $V_{\mbox{(BATT)}}$.

Figure 18. Precision High-Current Series Regulator

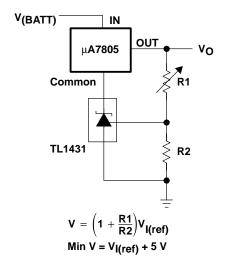


Figure 19. Output Control of a Three-Terminal Fixed Regulator

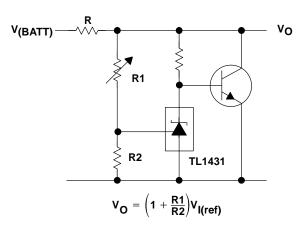
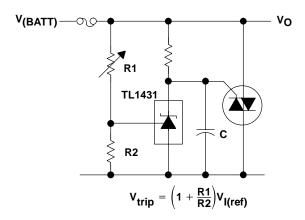
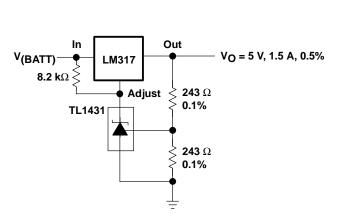




Figure 20. Higher-Current Shunt Regulator

NOTE A: Refer to the stability boundary conditions in Figure 15 to determine allowable values for C.

Figure 21. Crowbar

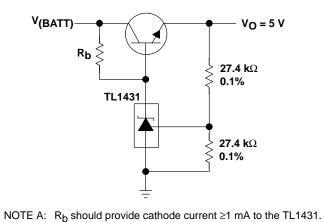
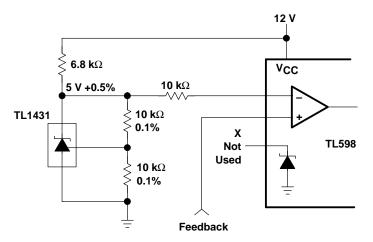
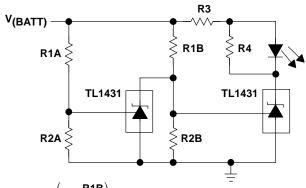
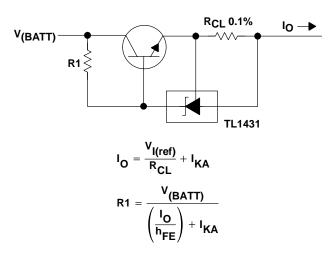


Figure 22. Precision 5-V, 1.5-A, 0.5% Regulator

Figure 23. 5-V Precision Regulator


Figure 24. PWM Converter With 0.5% Reference

$$\begin{aligned} &\text{Low Limit} = \left(1 + \frac{R1B}{R2B}\right) V_{\text{I(ref)}} & & \text{LED on When} \\ &\text{High Limit} = \left(1 + \frac{R1A}{R2A}\right) V_{\text{I(ref)}} & & \text{Low Limit} < V_{\text{(BATT)}} < \text{High Limit} \end{aligned}$$

NOTE A: Select R3 and R4 to provide the desired LED intensity and cathode current ≥1 mA to the TL1431.

Figure 25. Voltage Monitor

Figure 27. Precision Current Limiter

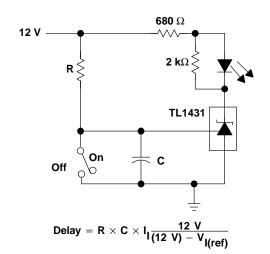


Figure 26. Delay Timer

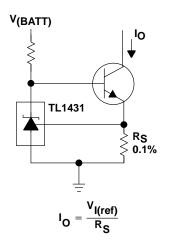


Figure 28. Precision Constant-Current Sink

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated